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Physical characteristics of a site that plant species inhabit may be useful in 

deriving the range of the species.  Current range maps for tree species of the United 

States were originally developed by Elbert Little.  These range maps were based 

primarily on observations.  The purpose of this study was to update Little’s (Little, 1971) 

range maps of select southern oak species in Mississippi by calculating the topological, 

soil, and climatic features of sites using a Geographic Information System (GIS) to 

analyze environmental variables associated with species distributions.  Data collected 

from databases were input into ArcMap and site data extracted using Hawth’s Analyst 

Tools.  Stepwise logistic regression performed with site variables yielded the parameters 

used in predictive models to generate probability maps for each species across 

Mississippi.  These probability maps demonstrate the potential to efficiently manage 

forests by giving a more encompassing view of species occurrence.  
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CHAPTER I 

INTRODUCTION 

Heightened interest in the changing availability and distribution of natural 

resources has fueled interest and debate ranging from oil resources, climate change, 

deforestation, carbon build-up, and forest utilization.  This concern is widespread, as a 

general call to become “green” in our daily lives is being sent up by governments and 

manufacturers alike. 

According to the Forest Resources of the United States, 2002, published by the 

U.S Forest Service, it is estimated that 749 million acres of land in the United States are 

forests, with 368 billion cubic feet in hardwood (Smith et al., 2004).  The south-central 

portion of the United States composed of Alabama, Arkansas, Kentucky, Louisiana, 

Mississippi, Oklahoma, Tennessee, and Texas is responsible for 88,703 million cubic feet 

of the hardwood growing stock in the United States.  Of this growing stock, 40,306 

million cubic feet is oak, Quercus spp. (Smith et al., 2004).  Oaks constitute 48 percent of 

all hardwood lumber produced (Cassens, 2007). 

There are multiple species in the Quercus genus, which is usually broken into two 

sections, red oaks and white oaks.  While there are several reasons for this delineation 

among oaks, the main difference is due to the structure of pores within the wood.  White 

oaks have characteristic pores clogged with membranous growths called tyloses.  Red 

oaks have open pores thus restricting their use to products such as veneer, pulp and paper, 

railroad ties, pallets and lumber, whereas white oaks can also be used for wet or “tight” 
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cooperage (e.g. whiskey barrels) due to their closed pores which makes the wood 

impervious to liquids.   

The use of the tree as lumber is dictated by three things: the quality of lumber 

yielded, and the purpose for that lumber and the range of the tree.  Lumber quality is 

partly contingent upon the site conditions and by the intensity of competition that the tree 

experiences while growing. Competition on a site dictates the number of limbs by 

influencing the epicormic branching of a tree as well as growth rate.  Aside from 

competition, optimal growth is attained when the species is correctly matched to the 

environmental characteristics of the site.  Site characteristics, aside from genetics and 

human influences like management techniques, play a part in the growth of the tree, the 

number of limbs, and the color of the wood.  All of these characteristics play an 

important role in the value of the tree.  Specific site characteristics include soil texture, 

moisture availability, possible competition, slope, aspect, and elevation.  Baker and 

Broadfoot (1977) recognized this and made a field guide of site evaluation technique that 

examines site characteristics to estimate tree growth and site suitability at a site-specific 

level. 

Range influences the utilization of the tree through to the economical practicality 

of using a wood source close to the mills.  Oak species are rarely hauled out of their 

current range due to the economical cost of hauling to the mills.  This cost is usually only 

overlooked if the tree species has unique characteristics that are key in a specific industry 

that is unable to meet this need with another species in the immediate area.  Each species 

of oak has a specific range based upon specific site characteristics and climatic tolerance.  

This range is dictated by factors such as day length during the growing season, minimum 

temperature, and soil characteristics.  The U.S Department of Agriculture recognized 
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these characteristics of the forests and decided it was important for the range of each tree 

species to be determined (Little, 1971).  Similarly, Baker and Broadfoot (1979) also 

reported later on the sites and ranges of trees. 

The ranges of U.S. tree species were first mapped as early as 1905 (Little 1971).  

Often, the ranges of those species were based upon old forest cover reports made as far 

back as the 19th century.  The maps and information were reviewed and updated in 1951 

by Elbert Little (Little 1971).  Botanical lists and forest surveys, along with other 

unpublished field notes and herbarium specimens, were used to compile the range maps 

for most of the economically important trees including oaks.  The range maps by Little 

show the generalized distribution of the trees based primarily on observations, rather than 

an analysis of site characteristics.   

Today, Little’s (1971) maps are being paired with other scientific information of 

micro-climatic characteristics to depict the range of many tree species found in the 

literature, e.g. Harlow and Harrar’s Textbook of Dendrology (1969).  It is imperative for 

foresters, silviculturists, landowners and land mangers to be aware of what specific 

species are found or can be grown in their area for both forest management and possible 

marketable aspects.  Authors of current textbooks on dendrology and silviculture are 

including these adaptations of Little’s (Little, 1971) maps in their textbooks to depict the 

range of tree species and to show the interactions between species and their respective 

ecosystems. 

Unfortunately, there are problems resulting from using Little’s (1971) range maps 

to show distribution.  One is that the information is not current, representing findings that 

can be up to a hundred years old.  When these maps were initially developed, it is 

unknown if there were clear establishment of rules for data collection or validation of 
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species identification, which could be a problem since much of the information was based 

upon field observations.  Little (1971), incorporated his observations with those of others 

to estimate the ranges.  According to the Atlas of United States Trees: Volume 1. conifers 

and important hardwoods, “these maps do not show where a species grows outside the 

natural range after having been introduced directly or indirectly by man, whether planted, 

escaped, adventives, or naturalized” (Little, 1971).  This resulted in incompleteness of 

species range maps, leading to misunderstandings by foresters and landowners alike.   

It has become somewhat common for dendrologists to find some tree species 

thriving and reproducing in abundance in areas that, according to Little’s (1971) range 

maps, should not have these species present.  An example of this is pin oak (Quercus 

palustris Muenchh)  Most textbooks such as Harlow and Harrar’s Textbook of 

Dendrology (1969),  show the current range of pin oak reaching only to south central 

Tennessee, but it has been documented through observation farther south in  northern 

Mississippi.   

In order to better manage and utilize our forests, we must first have an accurate 

and current understanding of the tree species present.  This study represents the initial 

process of providing for the clarification to range maps of ten economically and 

ecologically important oaks in Mississippi. This was accomplished through spatial 

analysis of sites on which these trees are found and predictive modeling of these oak 

species distributions in Mississippi. 

Literature Review 

A number of recent studies have correlated site characteristics with current and 

historic range and distribution of tree species.  Many of the studies, like Ohmann and 
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Gregory (2002), recognized the need to know the composition and forest structure at a 

regional spatial scale to determine natural resource policies. Ohmann and Gregory 

utilized Landsat imagery, climate, topography, geology and location to yield a gradient 

nearest neighbor model for predicting the spatial distribution of vegetation in coastal 

Oregon for ecological research.  Shostak et al. (2004) used topographic position, but also 

paired it with related site index to determine if there were common variables in the 

relationships of various ecological factors that influenced oak distribution in the 

Cumberland Mountain-Plateau region of Alabama.  Other studies, such as Iverson and 

Prasad (2001), Lister et al. (2000), and Iverson and Prasad (1998), looked at FIA (Forest 

Inventory Analysis) data to determine tree species distribution.  Iverson and Prasad 

(2001) used FIA to calculate importance values of trees in the eastern United States based 

upon their relative density and relative basal area in both the overstory and understory to 

yield maps of distribution, abundance and relative frequency of oaks in the western and 

eastern United States.  Iverson and Prasad (2001) then utilized this information for the 

Hadley and Canadian Climate Center, to find potential future suitable habitats using 

scenarios via the empirical model DISTRIB and the SHIFT model, a tree migration 

model.  DISTRIB uses a tree regression analysis approach combined with SHIFT model 

to incorporate historical migration rates and fragmentation of habitats. 

Iverson and Prasad (1998) utilized the FIA and classification and regression tree 

(CART) analysis previously to map tree species based upon climate change.  They found 

that there were some limitations to this regression technique, since they were unable to 

capture environmental factors that influenced the trees on a finer scale of slope at the tree 

location.  Nevertheless, Iverson and Prasad (1998) believed that their model could be 
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used to analyze datasets with many possibly interacting variables, and that it is suitable 

for determining between regional and site-specific effects. 

Lister et al. (2000), on the other hand, used FIA data and site characteristics such 

as elevation and slope to compare geostatistical procedures to improve predictions of 

species distribution.  They found that their methods of using exploratory analysis and 

least squares regression led to improved predictions over those made using regression 

procedures alone, as well as those only utilizing kriging and sequential Gaussian 

conditional simulation (SGCS).   

The finding posed in Listers et al. (2000) study may explain some of the 

confusion that Shostak et al. (2004) saw in their study.  Shostak et al. (2004) used a 

stepwise logistic regression procedure to look at a data set of variables thought to 

influence the outcome of the occurrence of oak.  They also ran analysis on the maximum 

likelihood estimates for individual oak stem success for topographic position and 

predicted oaks to be 80% less successful on upper slopes than on lower slopes.  This 

seemed contradictory to the whole oak composition analysis that found that the greatest 

numbers of oaks were found on upper slope positions than that of the middle and much 

more than the lower.  Shostak et al. (2004) believed the cause of this was that the upper 

slope positions in their study at pre-harvest had a larger number of stems.  They believed 

the density at this topographic position caused a decrease of not only oaks but also all 

trees.   

Other studies have looked at climate as a factor influencing the distribution and 

range of tree species both now and in the past.  Felicisimo et al. (2002), who came up 

with a model for the potential distribution of forests in Spain, looked at climate as one of 

the variables influencing the current distribution of trees.  Felicisimo et al. (2002) utilized 
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a logistic model based upon the presence/absence of the tree species to construct maps in 

which they were able to identify the places of greatest probability of species occurrence.  

Their model used a geographic information system (GIS) and data from vegetation maps, 

climatic, and lithological information.   

Hall et al. (2002), used early land surveys, 19th century maps of forest cover, and 

contemporary agricultural censuses, to look at land use and land cover for 300 years in 

Massachusetts.  They found that forest compositions correlated strongly with 

environmental conditions, especially variation in climate.  Hall et al. (2002) used GIS to 

compare changes in climate, geology and land-use to that of both the historical and 

modern forest composition. 

Historical data also were used by both He et al. (2006) and Abrams (2003) to 

show historical components of the forests and the changes that have occurred. He et al. 

(2006) used survey records of the Midwestern United States and hierarchical Bayesian 

model to look at historical forest composition and tree species distribution.  The Bayesian 

approach combined species and environmental relationships and explicit spatial 

dependence to map data.  The Bayesian model was used to identify the seven most 

significant covariates for terrain and soil.  The seven chosen were based upon their 

influence on the basic needs of the tree.  The seven were “elevation, slope, aspect, soil 

water capacity, soil organic matter, soil depth and depth of bedrock.”   

He et al. (2006) narrowed their study to three different classification groups.  One 

was black oak, as their individual species, because of its abundance in Missouri.  For the 

genus group, they looked at the “bottomland oaks (Quercus Spp.) that included primarily 

pin oak, white oak and red oak.”  Their last group was a functional group that 

incorporated hickories and oaks.  He et al. (2006) found that bottomland oaks might have 
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occurred where there were wide floodplains with islands of high elevation.  They were 

also able to determine that black oak would have been found on most upland sites 

examined in this study due to intolerance of flooding. 

Lastly, Abrams (2003) looked at and analyzed historical writings such as early 

land surveys and witness trees to determine the forest makeup before European 

settlement in the eastern United States.  Abrams (2003) found that areas in the United 

States, currently dominated by red oak (Quercus rubra) and chestnut oak (Quercus 

prinus), once were predominately white oak (Quercus alba).  He found that white oak is 

a more versatile oak than any other eastern oak species.  It is unspecialized in its growing 

range, causing it to lose out in competing for nutrients with oaks that are more site-

specific, such as red oak, which grows on rocky ridges and chestnut oak that is “more 

xerophytic, fire resistant, and tolerant of nutrient-poor soils”. The previously mentioned 

site factors along with human interventions have made the forest composition as we see it 

today. 

All of the studies agreed that oak composition of a site is influenced by the 

climatic, topographic, and soil characteristics of a site.  The researchers of these studies 

considered different aspects of site characteristics and evaluated them in various ways but 

all agreed that knowing the interaction of a tree species with site conditions would aid in 

determining distribution of trees.  It is the aim of this study to follow in the ideas of 

previous investigators to derive predicted distributions of selected oak species.  . 
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Objectives 

The first objective of this study was to determine the absence\presence and 

abundance of ten Quercus species in Mississippi that are utilized in the hardwood 

industry and by wildlife.   

• Q. alba L. (white oak)  
• Q. falcata Michx. (southern red oak)  
• Q. marilandica Muenchh. (blackjack oak)  
• Q. michauxii Nutt. (swamp chestnut oak)  
• Q. nuttallii Palmer (Nuttall oak)  
• Q. pagoda Raf. (cherrybark oak)  
• Q. phellos\nigra L. (water/willow oak)  
• Q. shumardii Buckl. (Shumard oak)  
• Q. stellata Wangenh. (post oak)  
• Q. velutina Lam (black oak). 

This information was used to make maps showing the predicted distribution of the chosen 

oak species in Mississippi that are more up-to-date and site specific than Little’s range 

maps.  This will help foresters and landowners identify and manage the trees on their 

lands in Mississippi more successfully.   

The second objective of this study was to use the abundance information to 

determine the physical characteristics of the sites that these oaks occupy.  The physical 

characteristics of the sites was determined by looking at precipitation, temperature, flow 

accumulation, elevation, slope position, aspect, and soil texture and drainage class of 

each plot.  This information was used to make a species suitability model derived from 

the parameters of stepwise logistic regression.  The logistic parameters were used to 

model site preferences across the state to determine the potential distribution of each 

species in Mississippi.  The outputs were maps showing probable distribution of species 

across Mississippi.  Those maps can potentially serve as management tools to be used by 
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landowners and foresters to determine if a tree will grow on a specific site if planted 

there, so more economical and ecological pairing of oak species to a site can occur. 

 



www.manaraa.com

 

11 

CHAPTER II 

METHODS 

Data for this study came from publically available databases.  All secondary data 

had to be downloaded from- various sites and adapted to fit the specific nature of this 

study.  The tree species information came from Mississippi Institute for Forest Inventory 

(MIFI) database.  The data used to determine the physical characteristics of each site 

were gathered from several sources.  Aspect, slope position, elevation, along with flow 

accumulation were derived from a 10-meter Digital Elevation Model (DEM) that was 

acquired through contact with the Mississippi Automated Resource Information System 

(MARIS) Technical Center.  The Natural Resources Conservation Service (NRCS’s) Soil 

Survey Geographic (SSURGO) Database website yielded the data needed to determine 

the soil characteristics of the sites.  Lastly, the precipitation and temperature data used 

were derived from the Parameter-elevation Regression on Independent Slopes Model 

(PRISM) data put out by Oregon State University (Daly, et al., 2002b). 

Study Area 

The study area for this project encompasses the whole state of Mississippi 

excluding three counties (Figure 1).  Only 79 counties were used out of the 82 total 

counties of Mississippi due to inconsistencies or unavailability in the SSURGO soil data.  

At the time of this study, the soil data for Scott and Greene counties had yet to be made 

available to the public in digital format.  Wilkinson county data were not used because of 

a lack of consistency in the delineation of the horizon layers with those of the other 
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counties due to a differing of nomenclature used to describe soil types. This made 

matching horizon information to that for other counties impossible.  Therefore, all 

analysis of plots in these areas was dropped from further consideration. 

 

 

Figure 1 Study area map showing the counties in Mississippi used in this study. 
Greene, Scott, and Wilkinson shown in red were excluded from the study. 
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Tree Species Data 

MIFI plot information was gathered from 2004 to 2009.  MIFI divided the state 

into five survey regions (Southwest, Southeast, Central, North, and the Delta) and 

collected forest inventory data on one region per year.  MIFI collected over one hundred 

plots per county.  The goal of MIFI is to “develop and implement a continuous, statewide 

forest resource inventory necessary for the sustainable forest based economy” (Tucker, 

2010). 

The information generated by MIFI used to determine tree density and 

distribution for this study came from both the plot- and tree-level tables.  Presence and 

abundance data for the ten target species were extracted from the MIFI database and 

compiled into data tables.  These data include the latitude and longitude of the plot 

centers, the plot number and a tally of all tree species found on the plots.  The latitudes 

and longitudes were entered into ESRI® ArcMAP™ 9.3.1 to yield maps in point 

shapefile format showing the currently recorded Mississippi range and distribution of 

each economically or ecologically important oak. The other data were incorporated into 

the attribute tables of the plot data in binary form as a 1 or 0 for the presence or absence 

of each particular species on that plot.  Then from each set of plot data, a validation set of 

20 % of the total plots that showed occurrence of each species of oak were taken to check 

the accuracy of the range maps.  Table 1 shows the total plots for each species and the 

number of plots showing occurrence of the species.  The number of total plots considered 

in the stepwise logistic regression differed from the total number of plots collected by the 

MIFI field crews, due to removal of the 20% validation set of occurrence for each 

species.  This was done prior to running SAS on the species and with each validation set 

being randomly selected, some plots that would have eventually be eliminated due to 
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inhabiting sites in which environmental data were not available when the regression was 

run could have be selected out.  The validation sets and then the elimination of plots due 

to missing site characteristic data caused the total number of plots on which the 

regression was run to vary for each species.  The validation set was held out to check the 

validity of the models once the maps were yielded. 

Table 1 The total number of MIFI plots used in the logistic regression and the 
validation set with the number of presence and absence by oak species used 
to derive the logistic parameter for the models 

  Number of Plots with  

Oak Species 

20% 
validation 
set Presence(1) Absence(0) Total plots 

black oak 14 49 5731 5780 
blackjack 66 247 5481 5728 
cherrybark 129 381 5313 5694 
Nuttall 30 106 5662 5768 
post 129 445 5226 5671 
Shumard 18 62 5719 5781 
southern red  272 898 4642 5540 
swamp chestnut  27 104 5658 5762 
water/willow  651 2002 3293 5295 
white  270 873 4687 5560 

 

In order to run the species suitability analysis, the physical characteristics of each 

site were determined.  Environmental factors used in these analyses were topographic 

features (aspect, slope, and elevation), temperature, precipitation and the soil texture and 

drainage class of the site along with percent clay and total representative horizon depths. 

Elevation and Derived Data 

For this study, a DEM of the whole state that had already been mosaicked 

together was requested from the MARIS Technical Center.  The DEM is at a 10-meter 
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horizontal resolution and in the Mississippi Transverse Mercator (MSTM) projection.  

The 10-meter DEM of Mississippi was derived from U.S. Geological Survey (USGS) 

Digital Line Graph (DLG) hypsographic and hydrographic source data.  The DEM was 

imported into ArcMap Version 9.3.1.   In the ArcMAP ArcToolbox, Spatial Analysis 

tools for hydrology and surface were utilized to calculate (or estimate) aspect, percent 

slope and flow accumulation of each pixel from the Mississippi DEM. The process to 

compute the aspect was to input the DEM into the Aspect tool under the Surface tool in 

the Arc Toolbox.   The output was a raster showing the azimuth direction that each pixel 

in the Mississippi DEM faces.  ArcMAP classifies the ranges of azimuth direction into 

narrow ranges of nine classes (flat, North, Northeast, East, Southeast, South, Southwest, 

West, and Northwest) (Appendix-Table 15).  These categories were further reclassified 

into four variables of North, South, East, and West to generalize variation in the data and 

aid in the convergence of the logistic regression.  Flat areas were eliminated from the 

study since visual inspection when compared to the elevation raster indicated these are 

typically water. 

The process for determining the percent of slope was equally as simple, except a 

conversion factor of 0.3048 was applied to the “z” units of the DEM in the slope 

calculator toolbox tool, since the “x”(easting) and “y” (northing) units were in meters 

while the “z” (elevation above mean sea level) units were in feet.  This allows the z units 

to be converted into meters since 1 foot equals 0.3048 meters.  The ending result was a 

raster file showing the percent slope of each pixel from the Mississippi statewide DEM. 

In order to determine the potential wetness of the pixels in the 10 meter DEM, the 

flow accumulation was calculated.  The flow accumulation of each pixel was determined 

using the hydrology tools under the Spatial Analyst Tools in the ArcMap Toolbox.  The 
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raster was first run through the fill tool in which all the small imperfections in the data 

were filled to resemble the elevation of the surrounding pixels.  The filled raster was then 

used to calculate the flow direction in which the movement of water from a cell to the 

steepest adjacent cell is shown.  The flow direction raster was used as the input raster to 

determine the flow accumulation of each cell by calculating the contribution of the flow 

into each cell from surrounding up-slope cells.  To aid in analysis in SAS, the log-plus-

one transformation was applied to the flow accumulation raster to scale the range of 

values to those of the ranges of the other variables to aid in convergence.   Figures 2-5 

show maps of the variables derived from the MARIS DEM. 
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Figure 2 Digital Elevation Model (DEM) of Mississippi based upon horizontal  
samples of elevation at 10-meter intervals derived from U.S. Geological 
Survey (USGS) Digital Line Graph (DLG) hypsographic and hydrographic 
source data 
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Figure 3 Percent slope for Mississippi derived from 10-meter Digital Elevation 
Model (DEM). 
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Figure 4 Aspect for Mississippi derived from 10-meter Digital Elevation Model 
(DEM). 
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Figure 5 Flow Accumulation for Mississippi derived from 10-meter Digital 
Elevation Model (DEM). 

Climatic Features 

PRISM Data (Parameter-elevation Regression on Independent Slopes Model) is a 

climate analysis system that generates gridded estimates of annual, monthly and event-
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based climatic parameters using point data, DEM and other available spatial datasets 

(Daly et al., 1997).  The stated accuracy of the original DEMs were 130 m circular error 

with 90% probability (Daly et al., 2002). The maximum temperature data for the 

conterminous United States were downloaded for 1958-2008 and were combined using 

the model maker in ERDAS Imagine to yield one raster showing the average maximum 

50-year temperature for the conterminous U.S.  It was then resampled to 10-meter 

resolution.  The raster was then clipped to the boundary of Mississippi and converted 

from degrees Celsius to Fahrenheit for ease of interpretation.  The same technique was 

then applied to maximum annual precipitation, which after being combined, was 

converted from millimeters to inches for ease of interpretation of results.  The outputs for 

the maximum annual temperature and precipitation for the state can be seen in Figure 6 

and 7. 
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Figure 6 Annual average temperature for Mississippi derived from 1958-2008 
annual temperature PRISM data 
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Figure 7 Annual average precipitation for Mississippi derived from 1958-2008 
annual precipitation PRISM data. 

Soils Data 

The soils data for this study were retrieved from the SSURGO database.  They 

were downloaded by county for Mississippi.  The scales of these maps generally range 
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from 1:12,000 to 1:63,360.  The SSURGO mapunits consist of one to three components 

each.  The attributes table of the mapunits tells the proportional extent of the component 

soils and gives the properties of the mapunits, which are tied to the National Soil 

Information System (NASIS) attribute database (NRCS, 2009).  

At the time of this study, Scott and Greene counties had yet to be put into digital 

format, so these counties were eliminated from the study.  Wilkinson County was also 

eliminated from the study do to a change in horizon classification that had taken place 

when this soil information was collected.   The change in the nomenclature of the soil 

horizons in Wilkinson county was a result in a change in policy coming into effect during 

the year that these data were being processed; this changed made it incompatible with the 

other county layers.  The downloaded county soil databases were input into Microsoft 

Access using the template provide by SSURGO and tied to the spatial representation of 

the map unit following the technique laid out in Downloading SSURGO Soil Data from 

Internet by  Merwade (2008).  Once the tables had been compiled into the template, the 

tables were sorted for information concerning horizon depths, textures, drainage classes, 

and percent clay.  The tables that contained this information and their linking fields are 

shown in Figure 8.  Tables- chorizon, chtexturegrp and chtexture contain information on 

a horizon level such as the percent clay, texture and depth (NRCS, 2009).  Component 

table delineates the soil overall make up and tells the drainage class.  Tables mapunit and 

muaggatt contain the soil units names, size and the unique key field, mukey, needed to tie 

all tabular data to the polygonal spatial representation of the soils. 
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Figure 8 Natural Resources Conservation Service (NRCS)’s Soil Survey Geographic 
(SSURGO) database tables with soil variables used and the key fields in 
the tables.  The key fields in the arrows are names of columns that have 
unique identifiers used to link the tables to one another (NRCS, 2009). 

The tables that had information important in this study were then input into JMP 

and joined based upon their common key fields.  Before the tables could be joined, the 

entries had to be reordered and some fields deleted to ensure that each soil map unit 

would have only one unique identifier.  One field that had to be sorted and every “no” 

entry deleted was the RV indicator field, which tells, “if a soil structure is representative 

for the horizon” (NRCS, 2009).  The second column in which entries were deleted was 

the majcompflag column that “indicates whether or not a component is a major 

component in the map unit” (NRCS, 2009).  All entries of “no” were deleted and not 

taken into consideration for this study.  Nonessential columns, those that did not hold 

data of concern for this study, were then deleted from the selected tables.  The chorizon 

table was then reconstructed to segregate the information of concern by horizon layers, 

which SSURGO designated as H1, H2, H3, H4, H5, Cr, R, Oa (NRCS, 2009).  The 

consolidated tables were joined into one table showing total representative horizon depth, 

texture of each horizon, average percent clay of each horizon and the overall drainage 

class for the soil type.  The information was tied spatially in ArcMap to the soil mapunit 

polygons.  This process was repeated for each of the 79 counties of the study and then 
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merged into five groups similar to the MIFI regions.  The ranges in texture classes were 

so significantly different between counties that a generalization of reclassification had to 

be applied to narrow overall variation.  The soil texture classes were reclassified to fit in 

to four classes: sandy, silty, clay, and rock.  The drainage classes were reclassed into 

seven classes also for this reason.  (See Appendix Tables 13 and 14 for classifications)  

Figures 9-12 show the output for the texture classes for the three main horizons and the 

drainage classes of the soil map units. 
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Figure 9 Generalized soil texture of H1 for map units across Mississippi derived 
from the Natural Resources Conservation Service (NRCS)’s Soil Survey 
Geographic (SSURGO) database. 
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Figure 10 Generalized soil texture of H2 for map units across Mississippi derived 
from the Natural Resources Conservation Service (NRCS)’s Soil Survey 
Geographic (SSURGO) database 
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Figure 11 Generalized soil texture of H3 for map units across Mississippi derived 
from the Natural Resources Conservation Service (NRCS)’s Soil Survey 
Geographic (SSURGO) database. 
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Figure 12 Generalized soil drainage class for map units across Mississippi derived 
from the Natural Resources Conservation Service (NRCS)’s Soil Survey 
Geographic (SSURGO) database 

Statistical Analysis 

This study used stepwise logistic regression and GIS, similarly to the approach 

used by Felicisimo et al. (2002) and Shostak et al. (2004).  All the variables were joined 
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based upon spatial location to the soil polygons in ArcMap.  Tree plot information was 

then geospatially combined with the soils and other variable’s datasets.  Using Hawth’s 

Analysis Tools in ArcMap, the polygon information of the soils were extracted to the 

attribute tables of the tree data.  This resulted in a complete database of the oak 

composition of the plots along with the slope, aspect, flow accumulation, elevation, 

climate information and soil type information for each plot.   

The data were input into SAS and analyzed using the stepwise logistic regression.  

SAS code was written to eliminate from consideration plots that had no data, missing 

data, or zeros in the fields to aid in model convergence.  The variables for -aspect, 

textures for each of the three horizons, and drainage class were treated as categorical 

variables and dummy variables were assigned to each of the possible classes for each of 

these variables (Table 2).  The soil texture and drainage class were dummy coded using 

sandy class and water class as the reference groups.  An alpha of 0.05 was used to 

determine variable significance in the entry and exit of variables into the stepwise logistic 

regression.  The predictability of the logistic regression estimates was evaluated by the 

percent concordant and percent discordant values in SAS.  The percent concordant is the 

percent of comparisons between species presence to species absence, in which the 

predicted probability of species presence is higher than species absence. 
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Table 2 Categorical variables of aspect, drainage, and texture classes and the dummy 
variable classifications with the dichotomous variable design assigned to 
represent the variables in the stepwise logistic regression assigned by SAS 

Variable Category Value Design 

aspect 

North 1 *0 0 0  
East 2 1 0 0   
South 3 0 1 0   
West 4 0 0 1   

drainage class 

water\other 0 *0 0 0 0 0 
Excessively drained 1 1 0 0 0 0 
moderately drained 2 0 1 0 0 0 
well drained 3 0 0 1 0 0 
poorly drained 4 0 0 0 1 0 
excessively poor 
drained 5 0 0 0 0 1 

H1 texture class 
sandy 1 *0 0   
silty 2 1 0    
clayey 3 0 1    

H2 texture class 
sandy 1 *0 0   
silty 2 1 0    
clayey 3 0 1    

H3 texture class 
sandy 1 *0 0   
silty 2 1 0    
clayey 3 0 1    

* represents the reference group for the dummy variables 

 

The parameter estimates of variables that proved significant through the stepwise 

logistic regression in SAS were then input into the logistic regression equation (1) using a 

model built in ERDAS Imagine. 
 

                                            (1) 
 

where: 

P(Y=1) = probability of oak occurrence on site 
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e = exponentiation 

α = intercept from SAS output 

β = parameter estimate 

X = significant variable  

This yielded eight rasters showing the probability of occurrence for each of the eight 

oaks.  Once the probabilities were calculated, the rasters were input back into ArcMap 

and the validation sets of the oak presence point data were projected onto them to check 

the accuracy of the probabilities. 

According to King and Zeng (2001), when binary dependent variables (e.g., 

presence and absence data) are unequally represented, as is the case with some of these 

oak species, logistic regression can underestimate the probability of occurrence.  The 

presence data are typically underestimated while the larger pool of absence data is 

overestimated.  In order to address the underestimation resulting from logistic regression 

on these data, 1000 test regression iterations were executed and small random samples 

were selected out of the full dataset with each sample composed of all presences and an 

equal amount of  absences.  SAS code was written to randomly run 1000 iterations of 

these equal samples and conduct stepwise logistic regression on the smaller datasets so 

that it could be determined if the same variables were significant without the 

overestimation of absences.  The results of the iterations for each species can be seen in 

the Appendix in Table 16. 
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CHAPTER III 

RESULTS 

Soils Database 

The initial statistical analysis of the independent variables proved to be 

unsuccessful due to quasi-complete and complete separation issues occurring within the 

data configuration.  These issues stemmed from too many independent variables and too 

much variation within the variables from the SSURGO database.  With the validity of the 

model in question due to these issues, the questionable variables were investigated and 

were either eliminated or reclassified.  It was determined that since only horizon levels, 

H1, H2, and H3, based upon change in color, were consistently delineated similarly 

across the counties, the independent variables found in these layers would be the only 

variables taken into consideration for this study.  Also percent clay and texture class 

appeared to be correlated. Therefore, the variable percent clay was dropped to aid in the 

resolution of the quasi-complete separation issue, since percent clay failed to consider 

differences in sand and silt fractions of the soil.  After making these changes, texture for 

the three horizons and drainage class were the only variables used from the SSURGO 

database.  In order to achieve a workable reliable model, stepwise logistic regression was 

executed for each species.  Convergence and a reliable model were obtained for all 

species of concern except for black oak and swamp chestnut oak.  These oaks, therefore, 

were removed from further consideration in the study. 
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Statistical Models 

The predictive ability of the full models was assessed by looking at the percent 

concordant and percent discordant numbers (Table 3) as well as the c value which 

according to Kutner, et al. (2004) are useful measures of a model’s predictive power.  

These numbers were obtained from the Association of Predicted Probabilities and 

Observed Responses of the SAS output.  The c value indicates the area under the receiver 

operating characteristic (ROC) curve, which provides gives the concordance index for the 

models (Kutner, et al., 2004).  The predictability of each species of oaks’ stepwise 

logistic regression models showed satisfactory predictability with all percent concordant 

and c being 0.64 or greater.  The model with the highest predictability was Nuttall oak 

with a concordance of 85.50 and the poorest predictability was with the post oak model 

with a concordance of 64.00. 
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The variables that proved to be significant for each of the oak species varied so 

much that each species is best discussed separately than as a group.  The number of 

species in which the variable was significant in the occurrences of that species from the 

logistic regression is graphically shown in Figure 13.  Tables 4 through Table 11 in the 

sections that follow show the logistic regression coefficient, the standard error, odds ratio 

and p-values for the significant variables of the final and best model for each of the oaks. 

 

 

Figure 13 Summary of variables significant in predicting occurrence for each species 
derived from the stepwise logistic regression output. 

White oak 

Elevation, precipitation, temperature, percent slope, flow accumulation and 

texture class of the soils were all significant predictors for the occurrence of white oak 

(P< 0.05; Table 4, Figure 14)  The test regression iterations revealed that only one 
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variable, flow accumulation, was not significant over 50 % of the iterations (Appendix-

Table 16).  The odds ratio for flow accumulation indicates that when holding all other 

significant variables at a constant, an increase of flow accumulation by one unit will 

increase the likelihood of white oak occurring by 1.11 times.  More clay and silt 

occurring in H2 increases the likelihood of white oak occurring and has the most 

significant influence with odds ratios of 1.9 and greater.  Increases of precipitation or silt 

or clay in H1 and H3, reduce the probability of white oak occurrence (Table 4). 

Table 4 Stepwise logistic regression coefficients and fit statistics for significant 
variables correlated with occurrence of white oak in Mississippi 

 
Variable Coefficients Standard 

Error Odds Ratio 
Lower 

Confidence 
Level 

Upper 
Confidence 

Level P-value 
 Intercept -0.28388 1.74641    0.87087 
Climate variables 
 precipitation (in.) -0.14869 0.02009 0.86184 0.82856 0.89645 0.00000 
 mean annual 

temperature (F) 0.08229 0.02715 1.08577 1.02950 1.14511 0.00244 
Topographic variables 
 elevation (ft) 0.00122 0.00041 1.00122 1.00042 1.00202 0.00271 
 percent slope 0.09292 0.01016 1.09737 1.07574 1.11944 0.00000 
 flow 

accumulation 0.10681 0.05442 1.11273 1.00014 1.23798 0.04970 
Soil variables 
 H1 silty* -0.48385 0.09456 0.61641 0.51213 0.74192 0.00000 
 H1 clay* -3.11858 0.52458 0.04422 0.01582 0.12364 0.00000 
 H2 silty 0.64217 0.18449 1.90059 1.32388 2.72854 0.00050 
 H2 clay 0.73620 0.18466 2.08799 1.45394 2.99855 0.00007 
 H3 silty -0.26927 0.11466 0.76394 0.61018 0.95644 0.01886 
 H3 clay -0.30541 0.12315 0.73682 0.57881 0.93798 0.01314 
*H=horizon   silty= soil having a particle size between 0.002-0.05   clay=soil having a particle size 
<0.002 
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Figure 14 Probability map showing the predicted range of white oak (Q. alba) 
derived from the stepwise logistic regression parameters of the significant 
variables: elevation, precipitation, temperature, percent slope, flow 
accumulation, H1, H2, and H3 texture classes. 
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Southern red oak 

Elevation, precipitation, percent slope, flow accumulation, drainage class, and 

texture class of the soils were all significant in explaining the occurrence of southern red 

oak (P< 0.05; Table 5, Figure 15).  The test regression iterations revealed that the 

variables flow accumulation, and H2 and H3 texture class, were not significant over 50 % 

of the iterations (Appendix-Table 16).  Slope was significant 100% of the iterations.  

Although elevation was significant, it had an odds ratio of 1.00074, which shows that 

there is only a little more than random association between elevation and the presence of 

southern red oak.  Soil textures play a significant role in the presence of southern red oak  

with most texture classes being negatively correlated to the occurrence of southern red 

oak with the exception of H2 (Table 5).  The more clay found in H2, the higher the 

probability of southern red oak occurring (Table 5).   

Drainage classes would appear to have the absolute highest influence on the 

occurrence of southern red oak although it is they are more of an indicator of where 

southern red oaks would not occur.  Excessively drained and very poorly drained sites 

have the highest significance when looking at the individual p-values but it would appear 

the southern red oak tends to favor well-drained sites more than any drainage class with 

an odds ratio of 0.82462 and with the overall drainage class has a p-value of 0.0138 this 

is still applicable. 
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Table 5 Stepwise logistic regression coefficients and fit statistics for significant 
variables correlated with occurrence of southern red oak in Mississippi 

 

Variable 
Coefficient
s 

Standard 
Error Odds Ratio 

Lower 
Confidence 
Level 

Upper 
Confidenc
e Level P-value 

 
Intercept 2.50966 0.99458    

0.0116
2 

Climate Variables 
 

elevation 0.00074 0.00037 1.00074 1.00001 1.00147 
0.0458

1 
 precipitation 

(in.) -0.07635 0.01592 0.92649 0.89804 0.95585 
0.0000

0 
Topographic Variables 
 

percent slope 0.05516 0.01080 1.05671 1.03458 1.07931 
0.0000

0 
 flow 

accumulation -0.12746 0.06061 0.88033 0.78173 0.99138 
0.0354

8 
Soil Variables 
 

excess. drain -1.34901 0.75602 0.25950 0.05897 1.14197 
0.0743

6 
 

mod. well drain -0.24894 0.19382 0.77963 0.53323 1.13989 
0.1990

0 
 

well drain -0.19283 0.17839 0.82462 0.58132 1.16976 
0.2797

1 
 

poorly drain -0.64614 0.21646 0.52406 0.34287 0.80101 
0.0028

4 
 very poorly 

drain -1.08772 0.76775 0.33699 0.07483 1.51748 
0.1565

5 
 

H1 silty* -0.33796 0.10240 0.71322 0.58353 0.87174 
0.0009

7 
 

H1 clay* -1.26370 0.31403 0.28261 0.15271 0.52298 
0.0000

6 
 

H2 silty 0.50606 0.17712 1.65875 1.17224 2.34717 
0.0042

7 
 

H2 clay 0.56003 0.17903 1.75073 1.23262 2.48662 
0.0017

6 
 

H3 silty -0.22762 0.11365 0.79642 0.63739 0.99513 
0.0451

9 
 

H3 clay -0.29870 0.12506 0.74178 0.58053 0.94781 
0.0169

2 
*H=horizon   silty= soil having a particle size between 0.002-0.05   clay=soil having a particle size 

<0.002 

 



www.manaraa.com

 

42 

 

Figure 15 Probability map showing the predicted range of southern red oak (Q. 
falcata) derived from the stepwise logistic regression parameters of the 
significant variables: elevation, precipitation, percent slope, flow 
accumulation, drainage class, H1, H2, and H3 texture classes. 
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Blackjack oak 

Elevation, precipitation, temperature, percent slope, and texture class of the soils 

in the second and third horizons were all significant in the occurrence of blackjack oak 

(P< 0.05; Table 6, Figure 16).  The test regression iterations revealed that only one 

variable, H3 texture class, was not significant over 50 % of the iterations (Appendix-

Table 16).  Clay in soil H2 and higher temperatures negatively influence the occurrence 

of blackjack oak; whereas clay in H3 is the highest predictor in blackjack occurrence with 

an odds ratio of 2.66806 and is positively correlated with occurrence.  Sandy texture in 

H2 appears to be significant for blackjack oak since the p-values of silty and clayey 

textures in this layers are both greater than 0.05 but the overall p-value is <0.0001, 

meaning that the reference group, sand, must be the significant variable.   
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Table 6 Stepwise logistic regression coefficients and fit statistics for significant 
variables correlated with occurrence of blackjack oak in Mississippi 

 

Variable Coefficients Standard Error
Odds 
Ratio 

Lower 
Confidence 

Level

Upper 
Confidence 

Level P-value
 Intercept 19.59757 3.54891 0.00000
Climate variables 
 precipitation (in.) 0.24871 0.04202 1.28236 1.18098 1.39245 0.00000
 mean annual 

temperature (F) -0.54073 0.05564 0.58232 0.52216 0.64941 0.00000
Topographic variables 
 elevation (ft) 0.00460 0.00075 1.00462 1.00313 1.00610 0.00000
 percent slope 0.09993 0.01688 1.10509 1.06913 1.14226 0.00000
Soil variables 
 H2 silty* 0.66081 0.53740 1.93636 0.67538 5.55170 0.21883
 H2 clay* -0.24963 0.55619 0.77909 0.26192 2.31748 0.65356
 H3 silty 0.59286 0.23671 1.80916 1.13759 2.87717 0.01226
 H3 clay 0.98135 0.25194 2.66806 1.62832 4.37171 0.00010

*H=horizon   silty= soil having a particle size between 0.002-0.05   clay=soil having a particle size 
<0.002
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Figure 16 Probability map showing the predicted range of blackjack oak (Q. 
marilandica) derived from the stepwise logistic regression parameters of 
the significant variables: elevation, precipitation, temperature, percent 
slope, H2 and H3 texture classes. 

Nuttall oak 

Elevation, precipitation, and texture class of the soils in H1 and H3 were all 

significant in predicting the occurrence of Nuttall oak (P< 0.05; Table 7, Figure 17).  The 
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test regression iterations revealed that only one variable, H1 texture class, was  

significant over 50 % of the iterations no other variables that were significant in the full 

model were found to be consistently significant in the iterations (Appendix-Table 16).  

Clay in H1 and soil texture of H3 were the only variables that positively influenced the 

presence of Nuttall oak, all with very high odds ratios of 1.99667 or greater.  On soils that 

were classified as having clay as their texture class in H3, the odds of finding Nuttall oak 

on these sites were 5.52 more times than any other variable when all other variables are 

held at a constant. 

Table 7 Stepwise logistic regression coefficients and fit statistics for significant 
variables correlated with occurrence of Nuttall oak in Mississippi. 

 
Variable Coefficients Standard 

Error Odds Ratio 
Lower 
Confidence 
Level 

Upper 
Confidence 
Level P-value 

 Intercept 6.68185 3.41819    0.05061 
Climatic variable 
 precipitation (in.) -0.18945 0.05589 0.82741 0.74156 0.92320 0.00070 
Topographic variable 
 elevation (ft) -0.00641 0.00151 0.99361 0.99067 0.99656 0.00002 
Soil variable 
 H1 silty* -0.17479 0.42505 0.83963 0.36499 1.93149 0.68091 
 H1 clay* 1.35600 0.52419 3.88066 1.38905 10.84158 0.00968 
 H3 silty 0.69148 0.67417 1.99667 0.53266 7.48452 0.30505 
 H3 clay 1.70906 0.66414 5.52378 1.50286 20.30273 0.01007 

*H=horizon   silty= soil having a particle size between 0.002-0.05   clay=soil having a particle size 
<0.002 
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Figure 17 Probability map showing the predicted range of Nuttall oak (Q. nuttallii) 
derived from the stepwise logistic regression parameters of the significant 
variables: elevation, precipitation, H1 and H3 texture classes 

Cherrybark oak 

Elevation, precipitation, temperature, drainage class, and texture class of the soil 

H1 were all significant in the occurrence of cherrybark oak (P< 0.05; Table 8, Figure 18.  
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The test regression iterations revealed that only variables, temperature and drainage class, 

were not significant over 50 % of the iterations (Appendix-Table 16).  High temperature 

and H1 silty texture were the only variables that were positively correlated to the 

presence of cherrybark oak.  Silty texture in H1 was the most influential with an odds 

ratio of 1.77293 meaning that cherrybark oaks are 1.77 times more likely to occur on 

soils with a silty texture in the first horizon than on any other soil texture type in that 

horizon.  From the results of the regression, it is obvious that moderately well drained 

sites are the most significant in the presence of cherrybark oak since moderately well 

drained is the only drainage class with a p-value less than 0.05 (Table 8). 

Table 8 Stepwise logistic regression coefficients and fit statistics for significant 
variables correlated with occurrence of cherrybark oak in Mississippi. 

 Variable Coefficients 
Standard 
Error Odds Ratio 

Lower 
Confidence 
Level 

Upper 
Confidence 
Level P-value 

 Intercept 3.43127 2.58899    0.18506 
Climate variable 
 precipitation 

(in.) -0.25937 0.02892 0.77153 0.72901 0.81654 0.00000 
 mean annual 

temperature (F) 0.12976 0.04278 1.13855 1.04698 1.23814 0.00242 
Topographic variable 
 elevation (ft) -0.00250 0.00058 0.99750 0.99637 0.99864 0.00002 
Soil variable 
 excess. drain -1.62470 1.05075 0.19697 0.02512 1.54457 0.12205 
 mod. well 

drain -0.84144 0.26581 0.43109 0.25604 0.72582 0.00155 
 well drain -0.39625 0.25049 0.67284 0.41181 1.09933 0.11368 
 poorly drain -0.33220 0.25545 0.71735 0.43480 1.18350 0.19345 
 very poor drain -0.79947 0.59080 0.44957 0.14122 1.43116 0.17599 
 H1 silty* 0.57263 0.13523 1.77293 1.36014 2.31100 0.00002 
 H1 clay* -0.90714 0.27758 0.40368 0.23429 0.69553 0.00108 
*H=horizon   silty= soil having a particle size between 0.002-0.05   clay=soil having a particle size 
<0.002 
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Figure 18 Probability map showing the predicted range of cherrybark oak (Q. 
pagoda) derived from the stepwise logistic regression parameters of the 
significant variables: elevation, precipitation, temperature, drainage class 
and H1 texture class. 
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Water/willow oak 

Precipitation, temperature, percent slope, and flow accumulation were all 

significant in the occurrence of water/willow oak (P< 0.05; Table 9, Figure 19).  The test 

regression iterations revealed that all variables that proved to be significant in the full 

model were also significant in over 80 percent of the iterations (Appendix-Table 16).   

Precipitation and percent slope are both negatively correlated with the occurrence of 

water/willow oak and both are similar in the significance in the role they play on 

presences with odds ratios around 0.95.  High temperature is the most positively 

significant variable to the presence of water/willow oak by increasing the probability of 

occurrence by a factor of 1.38383 when all other variable are held at a constant. 

Table 9 Stepwise logistic regression coefficients and fit statistics for significant 
variables correlated with occurrence of water/willow oak in Mississippi 

 

Variable Coefficients
Standard 

Error Odds Ratio

Lower 
Confidence 

Level

Upper
Confidence

LevelP-value
 Intercept -22.68681 1.27884 0
Climate variable 
 precipitation (in.) -0.03700 0.01202 0.96368 0.94125 0.986650.00208
 temperature (F) 0.32485 0.02211 1.38383 1.32513 1.445130.00000
Topographic variable 
 percent slope -0.04942 0.00893 0.95178 0.93527 0.968590.00000
 flow accumulation 0.16372 0.03961 1.17789 1.08989 1.272980.00004
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Figure 19 Probability map showing the predicted range of water/willow oak (Q. 
nigra/phellos) derived from the stepwise logistic regression parameters of 
the significant variables-precipitation, temperature, percent slope and flow 
accumulation. 
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Shumard oak 

Precipitation, temperature, and percent slope were the only three variables found 

to be significant in the occurrence of Shumard oak (P< 0.05; Table 10, Figure 20).  The 

test regression iterations revealed that only one variable, temperature, was not significant 

over 50 % of the iterations (Appendix-Table 16).  Precipitation and percent slope were 

only significant 53% and 56% of the times respectively (Appendix -Table 16).  The 

chance of the occurrence of Shumard oak will decrease with every unit of increase of 

precipitation by a factor of 0.74543 (Table 10).  An increase of temperature will increase 

the probability of Shumard oak occurrence the most out of all the significant variables 

with an increase by 1.37732. 

Table 10 Stepwise logistic regression coefficients and fit statistics for significant 
variables correlated with occurrence of Shumard oak in Mississippi 

 

Variable Coefficients 
Standard 
Error 

Odds 
Ratio 

Lower 
Confidence 
Level 

Upper 
Confidence 
Level P-value 

 Intercept -12.35415 5.65138     
Climate variables 
 precipitation (in.) -0.29379 0.06745 0.74543 0.65312 0.85078 0.00001 

 mean annual 
temperature (F) 0.32014 0.09183 1.37732 1.15046 1.64891 0.00049 

Topographic variable 
 percent slope 0.12083 0.02402 1.12843 1.07654 1.18283 0.00000 
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Figure 20 Probability map showing the predicted range of Shumard oak (Q. 
shumardii) derived from the stepwise logistic regression parameters of the 
significant variables: precipitation, temperature and percent slope. 
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Post oak 

Elevation, percent slope, flow accumulation, and texture class of H1 and H2 were 

significant in the occurrence of post oak (P< 0.05; Table 11, Figure 21.  The test 

regression iterations revealed that only variables, precipitation and H2 texture class, were 

not significant over 50 % of the iterations.  Flow accumulation and textures of H1 are 

negatively related to the occurrence of post oak.  Whereas, soils with textures of silt and 

clay in H2 are the most significant determinates on the occurrence of post oak with an 

increase of probability by factors of 1.85488 and 1.90103.   

Table 11 Stepwise logistic regression coefficients and fit statistics for significant 
variables correlated with occurrence of post oak in Mississippi. 

 Variable Coefficients Standard 
Error Odds Ratio 

Lower 
Confidence 

Level 

Upper 
Confidence 

Level 
P-value

 Intercept -3.40820 0.24004    0.00000
Topographic variables 
 elevation 0.00172 0.00044 1.00172 1.00085 1.00259 0.00011
 percent slope 0.03032 0.01372 1.03079 1.00344 1.05888 0.02708
 flow accumulation -0.38893 0.09691 0.67778 0.56053 0.81956 0.00006
Soil variables 
 H1 silty* -0.35060 0.11207 0.70426 0.56538 0.87726 0.00176
 H1 clay* -1.13735 0.36569 0.32067 0.15660 0.65664 0.00187
 H2 silty 0.61782 0.23440 1.85488 1.17164 2.93654 0.00839
 H2 clay 0.64240 0.24181 1.90103 1.18349 3.05362 0.00789

*H=horizon   silty= soil having a particle size between 0.002-0.05   clay=soil having a particle size 
<0.002 
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Figure 21 Probability map showing the predicted range of post oak (Q. stellata) 
derived from the stepwise logistic regression parameters of the significant 
variables: elevation, percent slope, flow accumulation, H1 and H2 texture 
classes. 
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Model Validity 

The accuracy of the probability maps yielded from the logistic coefficients 

(Figures 14-21) can be seen in Table 12 where the total numbers of plots known to have 

the specific oaks were used to validate the models.  The mean and maximum columns are 

the validation plots probability values with known species occurrence derived from the 

probability maps.  All species had the majority of presence points falling on relatively 

low probability portions of the maps with water/willow oak having the highest mean 

accuracy of 38%.  Nuttall oak had the highest maximum accuracy with at least one point 

accurately being predicted to occur on a site in which occurrence had been visually 

verified.  Only four species were able to correlate with the probability of occurrence 

better than 50 % with maximums of 0.60 and greater. 

Table 12 The mean and maximum prediction probability of occurrence for validation 
plots for Quercus spp. 

Oak Species Count 
Mean 
(%) Maximum (%) 

blackjack 66 0.27 0.65 
cherrybark 129 0.12 0.33 
Nuttall 30 0.08 1.00 
post 129 0.10 0.21 
Shumard 18 0.01 0.04 
southern red  272 0.21 0.46 
water/willow  651 0.38 0.72 
white  270 0.22 0.60 

 



www.manaraa.com

 

57 

CHAPTER IV 

DISCUSSION 

Soil Database 

The SSURGO database data caused many problems when it came to the mapping 

of soils across Mississippi.  There are several unavoidable flaws in these data that 

incorporated inaccuracies into the mapping of expected probability of suitable abiotic site 

characteristics for southern oaks across Mississippi.  The SSURGO database is derived 

from soil surveys collected at a county level.  According to Hodgkins, et al. (1979), the 

accuracy of interpretation derived from these soil surveys will be “highly unreliable” for 

several reasons.  SSURGO fails as a unified statewide system because of “intensive 

revisions and refinements in the Cooperative Soil Survey system” (Hodgkins, et al., 

1979).  These revisions affect changes in descriptions of soil types, making it possible 

that adjacent counties soil characteristics if collected years apart will not transition 

smoothly over the arbitrary county lines.  This is easily seen in the smooth edges and 

rectangular shapes in the soil data around Holmes, Tallahatchie, and Yazoo counties.  

The variation in collection techniques is compounded when some of the soil surveys that 

make up the state of Mississippi were published over 40 years ago.  Although the 

SSURGO database is not ideal to use at a statewide level, it is the most comprehensive 

database publically available. 
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Significant Variables 

Trees in the genus Quercus can occupy number of niches due to these species 

abilities to survive and grow over a range of environmental conditions (Johnson, et al., 

2002).  The niche of an individual species is narrower due to the ecological gradients the 

species prefer.  The ecological amplitude or range of habitat conditions that an oak 

species can tolerate often exhibits a bell-shaped curve form (Johnson, et al, 2002).  This 

distribution became evident in the results of this study; often times it was not a specific 

texture or slope that was preferred by the oaks but a range of conditions, making it 

difficult to pinpoint oak site preference by a significant variable. 

White oak 

According to the Silvics of North America Volume 2 Hardwoods (Rodgers, 1990), 

the preferred site conditions influencing the occurrence of white oak are wide ranging 

and variable.  White oak is typically “found on sandy plains, gravelly ridges, rich 

uplands, coves and well-drained loamy soils” (Rodgers, 1990).  Topography and aspect 

play a role on occurrence, white oak grows mainly on “upland aspects and slopes” except 

for “extremely dry, shallow-soil ridges; poorly drained flats; and wet bottom land” 

(Rodgers,1990).  White oak also occurs under a wide variety of temperatures and 

precipitation.  White oak can be found in areas with mean annual temperatures ranging 

from 45°to 70°F and annual mean precipitations of 30 to 80 inches (Rodgers, 1990).  The 

results of the stepwise logistic regression were explanatory of published site preference 

descriptions when viewed as a whole.  The texture classes identified in the model support 

the notion that white oaks prefer soils that have good internal drainage with the fact that 

all three-horizon texture classes were significant.  The sandy texture class was the most 

significant texture class in the first and third horizons.  Although it was negatively 
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correlated, sandy soils were the least negatively correlated.  Clay in H2 is beneficial in 

holding the water and is the most significant soil texture for that horizon.  Since sandy 

soil is the preferred texture in H1, this will eliminate sites in which ponding may occur 

since water moves freely into the second horizon when the first is comprised of high 

proportions of sand.  The logistic regression showed that flow accumulation was 

significant, meaning that the more runoff that a site has entering it from up slope, the 

higher the chance of white oak occurring, to a certain extent.  Since elevation and percent 

slope are also positively correlated to the occurrence of white oak, white oak would not 

be expected to inhabit swampy bottoms that would accumulate the majority of runoff.  

Supported for this if found by Rodgers (1990) statement, that white oak likes coves and 

well-drained soils.  Little’s (1971) range map and the probability range derived from the 

stepwise logistic regression coefficients are very similar to one another (Figure 22).  The 

probability map stresses a higher probability on the ridges and higher elevations than the 

bottoms and with small probability of occurrence in the northwest portion of Mississippi 

in the region of the Mississippi and Yazoo River floodplain, here after known as the 

Mississippi Delta, and along the Gulf coast. 
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Figure 22 Probability map derived from the significant variables logistic regression 
parameters showing the predicted range of white oak (Q. alba) in 
comparison to the Elbert Little’s (Little, 1971) range map of white oak (Q. 
alba). 
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Southern red oak 

According to Belanger (1990) in Silvics of North America Volume 2 Hardwoods, 

southern red oak is “one of the common upland oaks” that prefers to grow on dry, sandy 

clay soils.  Southern red oaks grow on dry ridge tops and upper slopes and are commonly 

found on slopes with aspects that are south and west facing. The stepwise logistic 

regression results support these findings (Table 5).  The logistic regression indicated a 

predicted increase of occurrence of southern red oak with an increase in percent slope, 

showing that steeper the slope,  higher the probability of the occurrence of southern red 

oak which is exactly what Belanger inferred.  The decrease of probability of occurrence 

with the increase of flow accumulation of a site also supports that southern red oak 

prefers dry sites.  This preference is also seen in the fact that well-drained sites had the 

least negative effect on the expected occurrence of southern red oak and that sand is the 

most influential texture of H1 and H3.  Although textures in these horizons are negatively 

correlated with occurrence, sandy soil was the least negatively correlated.  The 

significance of clay in H2 combined with the significance of sand in H1, supports that 

southern red oak prefers dry sites that are “dry, sandy, clay soils”(Belanger, 1990). 

The other site variable that had a negative impact on the occurrence of southern 

red oak was precipitation.  This is reasonable since, according to Belanger (1990), the 

preferred average annual precipitation for this species is between 40 to 50 inches.  

According to the Prism data raster, the average annual precipitation for Mississippi is 

between 51 and 68 inches a year, slightly more than what is preferred (Figure 7).  It does, 

however, occur readily here, and the cause of this disagreement could be.  The apparent 

role that precipitation plays on southern red oak distribution is so minute and variable that 

it overall has little influence on its occurrence in Mississippi.  When compared, Little’s 
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(1971) range map is not similar to the probability range derived from the stepwise logistic 

regression coefficients (Figure 23).  When Little’s (1971) range map was derived, the 

distributions of southern red oak and cherrybark oak were given by the same range map 

because taxonomically, they were considered as varieties of the same species.  

Cherrybark oak is generally found on wetter sites and is more likely to be found in areas 

like the Mississippi Delta than southern red oak.  This is one example to support the need 

of more updated range maps.  The probability map for southern red oak more logically 

stresses a higher probability on the ridges and higher elevations than the bottoms and 

with small probability of occurrence in the Delta and along the Mississippi coast. 
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Figure 23 Probability map derived from the significant variables logistic regression 
parameters showing the predicted range of southern red oak ( Q. falcata) in 
comparison to the Elbert Little’s (1971) range map of southern 
red\cherrybark oak. 
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Blackjack oak 

The results for blackjack oak differ strongly from site ecology reported in the 

literature.  Carey (1992) states that blackjack oak is a semi-xeric species that can be 

found on xeric sandy deposits and on dry upper slopes and ridges.  This species of oak is 

reported to occur on southerly and westerly aspects that are dry and nutrient poor (Carey, 

1992).  The logistic regression results of elevation, precipitation, percent slope, and sandy 

texture in H2 having a positive significance on the occurrence of blackjack oak and 

generally supports what Carey (1992) reported.  The deviation occurs with the high 

significance of clay in H3.  Clay in H3 is the most significant variable in the presence of 

blackjack oak according to the regression results. This is contrary to the actual 

distribution of blackjack oak.  When compared, the contradiction between the probability 

map of blackjack oaks from regression model and Little’s (1971) range map is quite 

evident (Figure 24).  A cause of this differing could be because the SSURGO texture data 

for the Mississippi Delta indicates high proportions of clay in all the horizon layers.   

There can be other possible causes for the apparent erroneousness of the analysis.  

First and foremost, it could be a result of misidentification of the species by field crews.  

Blackjack oak leaves might be mistaken for the shade leaves of southern red oak 

(Quercus falcata) or post oak (Quercus stellata).  This could be coupled with the fact that 

only 181 cases of occurrence were used to derive the logistic estimates.  Also of these 

181 cases, 102 occur on clay textures.  The test regression iterations revealed that the H3 

texture class was significant only for 6% of the iterations (Appendix-Table 16).  The 

significance of clay seen in the full model could have been due to the overestimation of 

absences.   
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Soils data, mentioned previously as being inconsistent, are likely the third source 

of error for this species.  The high clay content of the soils for Holmes, Tallahatchie and 

Yazoo counties and the Blackbelt Prairie region in east-central Mississippi are a cause for 

concern because of symmetrical shapes of these features and dissimilarity to the 

surrounding county mapunits.  These areas are easily seen in the probability map (Figure 

24).  The combination of these flaws came together to yield the probability map seen in 

comparison to Little’s (1971) map with readily apparent overall differences for blackjack 

oak distributions (Figure 24). 
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Figure 24 Probability map derived from the significant variables logistic regression 
parameters showing the predicted range of blackjack oak (Q. marilandica) 
in comparison to the Elbert Little’s (1971) range map of blackjack oak (Q. 
marilandica). 
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Nuttall oak 

According to Silvics of North America Volume 2 Hardwoods (Filer, 1990), Nuttall 

oak occurs on clay flats that are poorly drained and in low bottoms of the Gulf Coastal 

Plain.  This species of oak grows “best on alluvial bottomlands of the Mississippi River 

and its tributaries” since it prefers heavy, poorly drained alluvial clay soils (Filer, 1990).  

These soils are found in “the first bottoms of the Mississippi Delta region” (Filer, 1990).  

Nuttall oak is also said to be commonly found on clay ridges (Filer, 1990).  The results 

from the stepwise logistic regression strongly support the preference of clayey soils.  

Clay was the most significant factor in the presence of Nuttall oak over any other 

variable.  This preference for clay could be correlated to why elevation is negatively 

influential to the presence of Nuttall oak.  Clay tends to occur more in the H1 at lower 

elevations due to particle size.  The clay particles are so small that they tend to stay 

suspended in water longer than courser sediments and thus settle in low areas with little 

water movement.  Nuttall oak preference for soils with high clay content was shown 

consistently to be significant through the iterations (Appendix Table 16) indicating that it 

is consistently an important explanatory variable across the state.  Filer (1990) states that 

Nuttall oaks are not found in permanent swamps.   

Precipitation proved to be negatively correlated with the presence of Nuttall oak.  

According to Filer (1990), Nuttall oaks grow in regions of the country that are 

characteristic of annual precipitation of 50 to 65 inches and mean temperature ranging 

between 45° F and 80° F.  Mississippi’s annual precipitation falls completely within this 

with a range between 51 to 68 inches.   

When comparing the probability map derived from regression analysis with Elbert 

Little’s (1971) range map (Figure 25), it is easily seen that they vary slightly.  The 



www.manaraa.com

 

68 

probability map’s red areas are areas that, as compared to Figures 9-11, are largely in the 

overall clay texture class.  The main variation between the two ranges occurs in the area 

of the Tombigbee River in the Blackbelt Prairie region in northeastern Mississippi.  This 

area is high in clay according to the SSURGO data and at a low relative elevation from 

the landscape perspective since it is the flood plain of this main river and its tributaries.  

These areas and the areas east of the Mississippi Delta region are somewhat 

misrepresented also due to the anomaly of the SSURGO data delineating these counties 

with such high clay content.  Little’s (1971) range map is also a more generalized version 

of the range, whereas the probability map is more site/area specific. 
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Figure 25 Probability map derived from the significant variables logistic regression 
parameters showing the predicted range of Nuttall oak (Q. nuttallii) in 
comparison to the Elbert Little’s (Little, 1971) range map of Nuttall oak 
(Q. nuttallii). 
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Cherrybark oak 

According to Silvics of North America Volume 2 Hardwoods (Krinard, 1990), 

cherrybark oak is a lowland tree that is generally not found on excessively wet or 

swampy soils.  The results of the stepwise logistic regression indicated elevation as one 

of the significant factors that explains the occurrence of cherrybark oak.  Elevation as an 

estimator was negatively correlated with the occurrence of this oak, meaning that it 

prefers lower sites and that increases in elevation, decrease the probability of presence.  

The majority of significant variables negatively affected the expected presence of 

cherrybark oak.  Temperature and silt in H1 were the only two factors that were shown to 

be positively correlated with the presence of cherrybark oak.  This was very similar to 

what was written by Krinard (1990).  The two most decisive things that Krinard (1990) 

could say about cherrybark oak was that it grows in areas that have hot summers and mild 

winters and is “best on loamy sites”.  Krinard (1990) goes on to say that, cherrybark oak 

can be found on “first bottom ridges, well-drained terraces, and colluvial sites”. Drainage 

is key to the sites in which cherrybark occurs according to Krinard, since it prefers sites 

that are loamy but with the adequate drainage, cherrybark oak can be found on clayey 

soils.  It is rare to find it in the lower Mississippi Delta, although, cherrybark oak is found 

in “areas of loessial soil” and “the rolling hills of the lower Piedmont and certain uplands 

of the upper Coastal Plain.”(Krinard, 1990)  The stepwise logistic regression results show 

that drainage negatively affected the predicted occurrence of cherrybark oak.  Drainage 

classes of well drained and poorly drained were the two that had the least negative effect 

on the occurrence of cherrybark oak. 

As previously stated, Little’s (1971) range map for cherrybark oak was the same 

as the range map of southern red oak so there is little ability to compare the two since for 
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this study, the species were considered separate.  The probability map for cherrybark oak 

showed no one area to be highly probable for the occurrence of cherrybark oak (Figure 

26).  The only area of high occurrence appears to be a small pocket near the coast.  This 

is believed to be an abnormality that may have been caused by the errors in input data 

and not true of the population.  Cherrybark oak occurs readily all across Mississippi, 

making it difficult to pinpoint significant occurrence variables.  Thus, the ambiguity of 

site preferences made this specific model apparently ineffective in predicting occurrence.  

The low probability in the loess hills adjacent to the Mississippi Delta and in the region 

known as the Blackbelt Prairie caused by the SSURGO delineation of clay in these areas 

resulted in a display similar to areas with no data.  Elevated probabilities were evident in 

areas where one might expect greater occurrence, riverine system and in the Mississippi 

Delta (indicated as lighter blue tones in Figure 26). 
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Figure 26 Probability map derived from the significant variables logistic regression 
parameters showing the predicted range of cherrybark oak (Q. pagoda) in 
comparison to the Elbert Little’s (Little, 1971) range map of southern 
red\cherrybark oak. 
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Water/Willow oak 

Water and willow oak both grow on a variety of similar sites.  Water oak 

(Quercus nigra) is found on sites varying “from wet bottomlands to well drained 

uplands” (Vozzo, 1990).  Water oak reaches its optimal quality on the well drained “silty 

clay or loamy soils on high flats or ridges of alluvial stream bottoms” (Vozzo, 1990).  

Willow oak (Quercus phellos) is found on ridges, flats and sloughs (Schlaegel, 1990).  

Willow oak is found on a “variety of alluvial soils” (Schlaegel, 1990). 

It is due to this ambiguity in site between the two species, that the probability map 

and Little’s (1971) range map (Figure 27) shows them occurring all over Mississippi.  It 

was hard to pinpoint exact sites because of the ranges of sites that water/willow oak 

occurs on.  The results from the logistic regression and the probability map indicate the 

probability of occurrence is mainly correlated with temperature and precipitation.  

According to Silvics of North America Volume 2 Hardwoods, the preferred annual 

precipitation for these two species range from 40 to 60 inches and temperatures between 

50-70° F (Schlaegel [1990] and Vozzo [1990]).  The probability map shows that the 

probability of occurrence decreases as it moves north (Figure 27).  This could be a result 

of the tendency of water/willow oak to retain leaves longer into the dormancy season, 

which may result in greater susceptibility to damage from extreme cold.  The odd square 

shape in the bottom left corner of southwest Mississippi (Amite County) is due to lack of 

soil data texture for this area. 
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Figure 27 Probability map derived from the significant variables logistic regression 
parameters showing the predicted range of water/willow (Q. nigra/phellos) 
oak in comparison to the Elbert Little’s (Little, 1971) range map of 
water/willow oak (Q. nigra/phellos). 
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Shumard oak 

According to the Silvics of North America Volume 2 Hardwoods (Edwards, 1990), 

Shumard oak is a red oak that prefers “moist, well-drained loamy, soils found on terraces, 

colluvial sites, and adjacent bluffs associated with large and small streams”.  The logistic 

regression results agreed with this assessment with percent of slope being significant.  As 

you increase the steepness of the slope, the likelihood of Shumard oak occurring, 

increases.   

The results also showed that temperature and precipitation were important in 

predicting the occurrence of Shumard oak.  Precipitation is negatively correlated to the 

presence of this oak.  Edwards (1990) states that, Shumard oak grows in areas in which 

the average annual precipitation range from 45 to 55 inches.  This is a little low for what 

we found was average for Mississippi.   Average precipitation for Mississippi is 51 to 68 

inches.  The likelihood of Shumard occurrences decreases with an increase of 

precipitation.  Temperature was only significant in 37% of the test regression iterations 

(Appendix-Table 16) showing that this variable may have been determined to be 

significant due to a unique physical geographic region that is not consistent throughout 

the state or by the overestimation of absences in the logistic regression. 

The probability map compared with Little’s (1971) range map are very similar to 

one another (Figure 28).  The probability range differs from the current range map in that 

it shows that the range could be cut off much further from the coast than is shown by 

Little (1971).  A high probability pocket is indicated on the western side of the 

Mississippi Delta.  This is a result in the negative correlation of precipitation on the 

occurrence of Shumard oak.  This area was classified as having an annual average 

precipitation around 50 inches, which is ideal for Shumard. Another possible cause for 
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this high probability pocket, could be due to Shumard preference for soils with high pH 

and the planting of this species on the Mississippi Delta’s high pH (7.8-8.0) soils 

(Kennedy and Krinard, 1985).  Another possible concern is in the high probability of 

Shumard indicated in the central Mississippi hilly region.  This could have been caused 

by the misidentification of scarlet oak (Quercus coccinea) as Shumard oak.  This 

potential misidentification  may also have caused elevation to be more significant in the 

overall prediction probability. 
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Figure 28 Probability map derived from the significant variables logistic regression 
parameters showing the predicted range of Shumard oak (Q. shumardii) in 
comparison to the Elbert Little’s (Little, 1971) range map of Shumard oak 
(Q. shumardii). 
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Post oak 

According to the Silvics of North America Volume 2 Hardwoods, post oak 

typically grows on dry sites such as rocky outcrops, ridges, and upper southerly or 

westerly slopes (Stransky, 1990).  These sites usually are poor in nutrients and well 

drained with course sandy textures (Stransky, 1990).  The results from the analysis of the 

physical characteristics of the sites generally concur with these descriptions.  Sand in H1 

was most significant for the presence of the occurrence of post oak with clay being so in 

H2.  Sand in H1 aids in internal drainage of the surface while clay in the second horizon 

often influences increased water and nutrients retention.   

From the results, it is also evident that post oak prefers sites that are high in 

elevation with steep slopes since both variables are positively correlated with the 

occurrence of post oak with occurrence probability increasing as elevation and slope 

increase.  Lower flow accumulation values are significant to the presence of post oak and 

correlated with the increase in elevation and are indicative of well drained sites that 

Stransky (1990) states that post oak prefers. 

Figure 29 shows the probability map for post oak in comparison to Elbert’s 

Little’s (1971) range map and both are similar.  The only deviation that the probability 

map makes from Little’s (1971) is in the Mississippi Delta area.  Little’s (1971) 

encompasses a slight part of the Delta while the probability map cuts off the range at the 

Loess bluffs.  This may have been due to some over simplification of the range by Little 

due to the mapping capabilities at the period or perhaps by inclusion of delta post oak 

(Quercus similis) in the identification of this species. 
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Figure 29 Probability map derived from the significant variables logistic regression 
parameters showing the predicted range of post oak (Q. stellata) in 
comparison to the Elbert Little’s (1971) range map of post oak (Q. 
stellata). 
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Model Validity 

The accuracies of the probability maps as compared to the validation plot set were 

all low.  The lack of confirmed validation sites for species falling in areas of high 

probability is a cause of some concern.  The inability of some of the models to predict 

sites with high probability is disconcerting due to the fact that all species mapped are 

known to occur in these areas and would be expected to show higher probability in the 

prediction of occurrence.  Several species probabilities only predicted sites with a highest 

probability of less than 50%.  The causes of these inaccuracies and limitations are likely a 

direct result of differences between input variable in both spatial resolution and 

geographic precision.   Management regime and species interactions were not taken into 

consideration for this study due to unavailability in spatial format, but likely also played a 

role in species composition at individual sites. 

The main validation and modeling issues come from the resolution of the 

environmental data largely at the landscape scale being compared to the species 

composition plot data.  The field plot observations came from areas of 1/5th, 1/10, or 

1/20th of an acre.  The soils, terrain, and climate data were at much courser resolution.  

The DEM used to derive the elevation, slope, aspect and flow accumulation was at a 10-

meter resolution although it was derived from topographic data including 7.5 minute 

quadrangle elevations sampled from a 30-by-30-meter grid.  This 10-meter resolution 

was also the resampling resolution for all other raster datasets.  The PRISM data started 

out at resolution of 4km and were resampled to 10-meter resolution.  The climate data at 

a course resolution of 4km were inadequate to describe local, topographically-driven 

variation in these explanatory variables on a 1/5th acre plot.  The best spatial precision 

for explanatory variables was to infer that the value was valid for 10 –meter from plot 
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center although the actual accuracy of some of these high-resolution data have been 

subject to also question earlier.    

The second cause of data error and lack of validity of our models comes from the 

plot species data.  The MIFI data were collected by numerous people with assumed but 

not confirmed varying ability in tree identification.  It is possible that some of the species 

were misidentified.  This is believed to be the case with some Shumard oak observations.  

Shumard oak and scarlet oak are morphologically similar in many respects and since 

scarlet oak occurs at sites higher in topographic position, this could cause the site 

probability maps to show Shumard at a slightly higher elevation than where it actually 

occurs.  A second example of this comes from a species of oak that this study had hoped 

to investigate but after further investigation of plot data was unable to model.  This study 

had planned to map the probability range of turkey oak (Quercus laevis), but was unable 

to because some of the MIFI data showed the species occurring in northern Mississippi.  

this was deemed to be an identification error since this red oak is found near the coast in 

dry sandy soils (Harlow and Harrar, 1969).  It is extremely unlikely that the species was 

widely transplanted north of its range due to the overall lack of commercial value.  It is 

more likely that southern red oak (somewhat similar) was misidentified as turkey oak in 

the northern tier of counties.  So instead of going to every site and confirming these 

misinterpretations, the species was eliminated from the study.   

The third possibility for low validity in the models is the SSURGO data.  The 

SSURGO data were a generalization of soil characteristics many of which were not 

confirmed at every site.  The SSURGO data were collected by soil scientists that visited 

sites taking only a few soil cores from the area and interpolating their findings across 

broad areas based on similarities in topography to the sample sites.  Three sets of 10 
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observational transects were done for each map unit.  The confidence level in the 

preciseness of the mapunits is about 3 acres (NRCS, 2009); because of limitation, it 

would be difficult to determine accurate site ecology for the species.  Many of the soil 

types were classified as complexes, associations or undifferentiated groups.  Complexes 

and associations are map units that are made up of “two or more dissimilar components 

that occur in a regularly repeating pattern” (NRCS, 2009).  Undifferentiated groups are 

map units that have components that do not occur together but are similar in use and 

management.  These generalizations made it difficult to get accurate soil data to associate 

with each oak species since the main component or most commonly occurring component 

was used for this study.  It is possible that a species of oak would be keying in on a more 

subtle secondary soil characteristics that was not taken into account due to limitations of 

the soils data in this study.  The impreciseness of the SSURGO made it hard to derive 

precise preferred soils for the species.  

Inconsistency in county soil delineations and classifications resulted in too many 

combinations of soil variables that in some cases could not be reconciled at the desired 

level of detail.  Therefore, components had to be combined and generalized in order to 

achieve statistical convergence.  Black oak is another species of oak that this study had 

planned to map but was unable to do so due to inaccuracies in the soil data.  The black 

oak model never achieved statistical convergence due to too much variation in the data 

even after the elimination of horizon 4.  Based on these problems, it was felt that this 

species should be eliminated rather than eliminate an important variable from 

consideration in all other species models. 
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CHAPTER V 

CONCLUSIONS 

Development of probability maps derived from stepwise logistic regression is the 

first step needed to up-date tree species range maps for commercial and ecologically 

important tree species.  Little’s (1971) maps were made in the most accurate and up-to-

date way possible during that time period, but with the technical tools currently available, 

it is believed that more accurate and detailed maps can be produced to depict current tree 

species distribution.  The probability maps and techniques discussed in this study are a 

positive step to achieve this goal.  Such was the case for post oak and white oak, which 

modeled closely to what is reported about the site preferences of these species.  In several 

cases, the probability maps were, in overall good visual agreement with Little’s (1971) 

range maps.  The ranges deviated slightly from one another with the exception of 

blackjack oak, which was probably a result of problems reported for the soils data.  The 

data used to derive these new ranges have errors and inaccuracies but it are the most 

complete data that are available.  It is felt that anomalies, such as shown in Appendix-

Table 16, where percent slope within the bottomland oak group varied from 0 to 100%, 

could be indicative of problems associated with the unequal size and uniformity of the 

datasets.  However, to completely verify this would entail a reconstruction of the data set 

and plots.  Unfortunately this could not be covered during the scope of this study. 

It is believed that with the data that are currently available, these probability maps 

are the most accurate that can be developed.  In order to get more accurate ranges of 
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southern oaks and perhaps other important species, soil characteristics should also be 

documented from field sites on which species composition is recorded in the future. 
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APPENDIX A 

RECLASSIFIACTIONS AND ITERATION TABLES
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Table 13 SSURGO soil texture classes and the reclassification and regrouping of 
texture classes for oak sites suitability models analysis. 

Textures 
SSURGO 

Abbreviation of 
textures 

Reclass texture 
group 

Numerical 
classification 

stratified loamy sand to sand SR LS S 

Sandy 1 

stratified sand to loamy sand SR S LS 
sand S 
loamy very fine sand LVFS 
loamy sand LS 
loamy fine sand LFS 
loamy course sand LCOS 
course sandy loam COSL 
course sand COS 
stratified to fine sandy loam to 
weathered bedrock SR FSL WB 
stratified fine sandy loam to 
loamy fine sand SR FSL LFS 
stratified sandy loam to fine 
sandy loam SR SL FSL 
stratified sand to fine sandy 
loam SR S FSL 
stratified loamy sand to fine 
sandy loam SR LS FSL 
stratified loamy fine sand to 
very fine sandy loam SR LFS VFSL 
stratified loamy fine sand to 
fine sandy loam SR LFS FSL 
stratified coarse sand to sandy 
loam SR COS SL 
silty loam SIL 
fine sandy loam FSL 
fine sand FS 
very fine sandy loam VFSL 
stratified loamy sand to sandy 
clay loam SR LS SCL 
mucky sand MKS 
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Table 13 cont. 
 

stratified to loam to weathered 
bedrock SR L WB 

Silty 2 

silt SI 
loam, variable L VAR 
loam L 
stratified very fine sandy loam 
to silt loam to silty clay loam 

SR VFSL SIL 
SICL 

stratified very fine sandy loam 
to silty clay loam SR VFSL SICL 
stratified sandy loam to silty 
clay loam SR SL SICL 
stratified silt loam to silty clay 
loam SR SIL SICL 
stratified sandy loam to silty 
clay loam SR SL SICL 
silty clay loam, variable SICL VAR 
silty clay loam SICL 
stratified muck to loam SR MUCK L 
mucky silt loam MKSIL  
silty clay loam, silty clay, clay SICL SIC C 

Clay 3 

sandy clay loam, variable SCL VAR 
sandy clay loam SCL 
sandy clay SC 
clay loam, variable CL VAR 
clay loam CL 
stratified very fine sandy loam 
to silty clay SR VFSL SIC 
stratified sand to clay SR S C 
stratified fine sandy loam to 
clay SR FSL C 
stratified sandy loam to clay SR SL C 
silty clay, clay SIC C 
silty clay SIC 
clay, variable C VAR 
clay C 
mucky clay MKC 
muck MUCK 
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Table 13 cont. 

very gravelly sandy loam GRVSL 

Rock 4 

very gravelly sandy clay loam GRV SCL 
gravelly sandy clay loam GRV SCL 
gravelly fine sandy loam GRV FSL 
angular cobbly fine sandy loam CBA FSL 
weathered bedrock, fine sandy 
loam WB FSL 
weathered bedrock WB 
unweathered bedrock UWB 
stratified weathered bedrock to 
loam SR WB L 
stratified weathered bedrock to 
fine sandy loam SR WB FSL 
sr to weathered bedrock SRWBFSL 

 

 

Table 14 SSURGO drainage classes and the reclassification and regrouping of 
drainage classes for oak sites suitability models analysis. 

SSURGO drainage classes 
Numerical reclassification 

groupings Generalized groupings 

excessively drained 
1 excessively drained 

somewhat excessively 
drained 

moderately well drained  2 moderately well drained 

well drained 3 well drained 

somewhat poorly drained 4 poorly drained 
poorly drained 

very poorly drained 5 excessively poorly drained 

other 0 eliminated from study 
water 
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Table 15 Aspect output and the reclassification of aspect for oak site suitability 
models analysis. 

Aspect 
Rasterized 
groupings

Reclassification 
grouping

Aspect 
generalized 

Rasterized 
groupings

Flat 1 0 Eliminated from study
North 022.5 1 North 022.5
Northeast 22.567.5

2 East 22.5157.5East 67.5112.5
Southeast 112.5157.5
South 157.5202.5 3 South 157.5202.5
Southwest 202.5247.5

4 West 202.5337.5West 247.5292.5
Northwest 292.5337.5
North 337.5360 1 North 337.5360
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